Abstract for the SWORDS 2023 presentation:

Cliqueful graphs as a means of calculating the maximum number of maximum cliques of simple graphs

Dániel Pfeifer ${ }^{a}$
${ }^{a}$ Budapest University of Technology and Economics pfeiferd@math.bme.hu

Simple graphs on n vertices may contain a lot of maximum cliques (largest cliques in the graph) and maximal cliques (non-extendable cliques in the graph). But how many can they potentially contain? In 1965, Moon and Moser [1] have already calculated the maximum number of maximal cliques of simple graphs on n vertices. We show, that the maximum number of maximum cliques of simple graphs on n vertices is also the same number [2]:

$$
M_{n}=\left\{\begin{array}{l}
3^{\lfloor n / 3\rfloor} \text { if } n \bmod 3=0 \\
4 \cdot 3^{(\lfloor n / 3\rfloor-1)} \text { if } n \bmod 3=1 \\
2 \cdot 3^{\lfloor n / 3\rfloor} \text { if } n \bmod 3=2
\end{array}\right.
$$

For this, we introduce the family of so-called "cliqueful" graphs: graphs that can be fully determined by their set of maximum cliques. Then we prove, that this set definitely contains graphs with the maximum number of maximum cliques on n vertices $\operatorname{MG}(n)$. We will do this by further reducing the set that contains $\operatorname{MG}(n)$, to so-called "saturated cliqueful" graphs, and "composite saturated cliqueful" graphs. It will turn out that $\operatorname{MG}(n)$, if $n \geq 15$, is almost the same as composite saturated cliqueful graphs with prime components of size ≤ 4.

References

[1] Moon J.W., Moser L., On cliques in graphs, Israel journal of Mathematics, 3, 23-28 (1965)
[2] D. Pfeifer, Cliqueful graphs as a means of calculating the maximal number of maximum cliques of simple graphs (2023) (ArXiv 2307.14120)

