Constructing bounded degree graphs with prescribed degree and neighbor degree sequences

Uroš Čibej ${ }^{a}$, Aaron Li ${ }^{b}$, István Miklós ${ }^{c, d}$ Sohaib Nasir ${ }^{e}$, Varun Srikanth ${ }^{f}$

${ }^{a}$ Univ. of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia
${ }^{b}$ Univ. of Minnesota, 206 Church St. SE, Minneapolis, MN, USA, 55455
${ }^{c}$ Rényi Institute, ELKH, 1053 Budapest, Reáltanoda u. 13-15, Hungary ${ }^{d}$ SZTAKI, ELKH, 1111 Budapest, Lágymányosi u. 11, Hungary ${ }^{e}$ Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604
${ }^{f}$ Georgia Institute of Technology North Avenue, Atlanta, GA 30332

Let $D=\left\{d_{i}\right\}$ and $F=\left\{f_{i}\right\}$ be two sequences of positive integers. We consider the following decision problems: is there a i multigraph, ii) loopless multigraph, iii) simple graph, $i v$) cycle-free graph (forest or tree), v) caterpillar $G=(V, E)$ such that for all $k, d\left(v_{k}\right)=d_{k}$ and $\sum_{w \in \mathcal{N}\left(v_{k}\right)} d(w)=f_{k}(d(v)$ is the degree of v and $\mathcal{N}(v)$ is the set of neighbors of v). Here we show that all these decision problems can be solved in polynomial time if $\Delta:=\max _{k} d_{k}$ is bounded. The problems are converted into an integer programming feasibility problem in which both the number of variables and the number of inequalities depend only on Δ but not on n. The problem is motivated by NMR spectroscopy of hydrocarbons. The algorithm has been implemented in the ZIMPL language, and its applicability is demonstrated on trees up to $n=1000$ vertices. The average reconstruction time for trees with 1000 vertices is still less than 40 milliseconds.

The talk is based on the publication by the same authors, Discrete Applied Mathematics, 2023;332:47-61. .

Acknowledgements: I.M. was supported by NKFIH grants KH126853, K132696 and SNN135643. The project is a continuation of the work done at the 2020 Budapest Semesters in Mathematics. All authors would like to thank the BSM for running the program.

