Sensitive χ^2 testing via sampling tripartite 3-uniform hypergraphs

András Hubai^{a,*}, Tamás Róbert Mezei^a, Ferenc Béres^b, András Benczúr^{b,c}, István Miklós^{a,b}

^aHUN-REN Rényi Institute, 1053 Budapest, Reáltanoda u. 13-15. Hungary; ^bHUN-REN SZTAKI, 1111 Budapest, Lágymányosi u. 11. Hungary; ^cSzéchenyi University, 9026 Győr, Egyetem tér 1. Hungary *hubaiandras@gmail.com

When assessing the independence of two categorical variables, the standard approach involves their bipartite interaction graphs transformed into contingency tables and analyzed using the χ^2 test. With three categorical variables, the interaction graph is a tripartite 3-uniform hypergraph, leading to a 3D contingency table. The χ^2 test remains applicable to assess the independence of any two variables of the trio through a 2D projection of the contingency table.

In this presentation, we introduce a more sensitive statistical test grounded in hypergraph theory. Specifically, we propose a hypergraphbased exact test that compares a χ^2 aggregation metric of the above interaction graph with a random sample of hypergraphs that share the same degree distribution.

In related research, the authors established the NP-hardness of sampling tripartite 3-uniform hypergraphs with prescribed degree distributions[1]. To address this challenge, we present a practical parallel tempering-based sampling method. We demonstrate, both on synthetic and real-world datasets, that the hypergraph-based exact χ^2 test consistently outperforms the conventional χ^2 test.

References

[1] arXiv:2308.13251 (2023)